

Spatiotemporal pattern extraction in functional neuroimaging

Hana Sebia⁽¹⁾, Thomas Guyet⁽¹⁾, Hugues Berry⁽¹⁾and Benjamin Vidal⁽²⁾ (1) AlstroSight, Centre de recherche Inria de Lyon, France (2) Université Claude Bernard Lyon 1, Villeurbanne, France

Context

- Brain activity requires tools to analyse signal dynamics
- Existing methods (eg QPP[1], ICA[2],...) rely on strong assumptions (recurrence, independance, spatial priors,...)

[1] Majeed W. et al. Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. NeuroImage, 54:1140–1150, 2011
 [2] Meyer-Bäse L. et al. Spatiotemporal patterns of spontaneous brain activity: a mini-review. Neurophotonics, 9:032209, 2022

Contribution

 Adaptation of a tensor decomposition framework «SWoTTeD » for spatiotemporal pattern extraction in functional neuroimaging

Sliding Window for Temporal Tensor Decomposition - SWoTTeD* -

- Given χ , a 3D **brain imaging** stack containing **T 2D** frames
 - SWoTTeD extracts *K* temporal patterns, \mathcal{P} , of duration t
 - ${\mathcal W}$ exhibits the occurrences of patterns ${\mathcal P}$ in the stack χ

- SwoTTeD opperates without prior assumtions, detecting both recurrent and rare neural events
- Applied to functional ultrasound (fUS), it reveals activation patterns linked to visual stimulation

* Sebia H. et al. : an extension of tensor decomposition to temporal phenotyping. Machine Learning, 113(9):5939–5980, 2024. Swotted

Minimisation Problem

- $\ell = \mathcal{L}(\widehat{\mathcal{X}}, \mathcal{X}) + \alpha \|\mathcal{P}\|_1 + \beta \mathcal{S}(\mathcal{W}) + \gamma \mathcal{R}_{\perp}(\mathcal{P})$
- $\mathcal{L}(\widehat{X}, X)$ is the reconstruction error described as the distance between the ground-truth Xand the reconstruction $\widehat{X} = \mathcal{P} \circledast \mathcal{W}$
 - * is a convolutional operator

Validation Framework

- Applied on functional ultrasound imaging (fUS) acquired from rat
 brain under visual stimulation
 - Varied the number of extracted patterns K in {2, 5, 10)

Quality of Recontruction

	SWOTTED		втр
K	t	Mean FIT	BTD Mean FIT
	50	0.0028 ± 0.007	
2	75	0.0030 ± 0.005	0.030 ± 0.001
	100	0.0036 ± 0.001	
	50	0.0034 ± 0.01	
5	75	0.0042 ± 0.004	0.038 ± 0.001

- $\|\mathcal{P}\|_1$ enforces **sparsity regularization** on **patterns** to focus on relevant signal changes
- S(W) is a pattern non-succession
 regularization term, penalizing reconstructions
 that reuse the same pattern within the same
 window t
- $\mathcal{R}_{\perp}(\mathcal{P})$ is an **orthogonality regularization** to enforce patterns to be as **distinct** as possible
- Varied the duration of extracted patterns t in {50, 75,100) frames
- Compared to Block Tensor
 Decomposition (BTD)

Evaluation Metric

$$FIT = 1 - \frac{\sum_{i=1}^{T} \|X^{(i)} - \widehat{X}^{(i)}\|}{\sum_{i=1}^{T} \|X^{(i)}\|}$$

Increasing the number of patterns K, or their duration t, improves the recontruction

The reconstruction of BTD is significantly better

Quality of Spatiotemporal Patterns

 Both SWOTTED and BTD detect activation in the superior colliculus and visual cortex during visual stimulation

BTD provides static spatial maps and their associated temporal signals

0 200 400 600 800 Time (s) **Figure 1:** One of the extracted patterns using BTD, exhibiting the response to visual stimulation.

-0.100

- **SWOTTED** extracts full spatiotemporal patterns as **sequences** of frames
- It reveals dynamic propagation: activation starts in the colliculus and spreads to the visual cortex

Figure 2: Four frames of a spatiotemporal pattern extracted, using SWoTTeD, from fUS under visual stimulation, showing signal evolution from left to right in response to the stimulus across different brain regions.

